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ABSTRACT

AL-Quraan, Areen Mahmoud Mufleh. On Robust Estimation of Seasonal
Autocorrelation Function for Periodic Autoregressive Models. Master of Science

Thesis, Department of Statistics, Yarmouk University, 2010. (Supervisor: Dr.
Abdullah A. Smadi), (Co-Supervisor: Dr. Mohammed Y. Al-Rawwash).

The importance of periodic autoregressive models as plansible models for seasonal
time series have recently increased. In this thesis the seasonal autocorrelation function

(SACEF) of such models is considered.

The main objective of this research is to investigate robust estimation of the SACF for
the periodic autoregressive models with different orders and time lags. In this thesis
we have considered three estimators for SACF including the ordinary moment
estimator beside two new estimators. We have studied via simulation technique
{Monte-Carlo simulation) the robustness of these estimators for the presence of

additive outliers in the time series in view of bias and MSE.

We found that the moment estimator is highly affected by the existence of additive
outliers while the other two estimators seem to be more robust on the basis of bias and
MSE.

A real application on a quarterly river—flow time series is carried out. The results of

this application assured the simulation results.

Key Words: Periodic autoregressive model, Seasonal autocorrelation function,
Robust estimation, Additive outlier, Monte-Carlo simulation.
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CHAPTER 1

Introduction

1.1 Preliminaries

A time series can be defined as sequence of observations taken sequentially in
time. Time series can be observed in different fields; for example, in agriculture,
business, economics, engineering and medical studies. The list of areas in which time
series is observed, studied and analyzed is endless. The purpose of time series analysis
is generally, to understand or model the stochastic mechanism that gives rise to an
observed series, to predict or forecast the future values of a series based on the history
of that series and the optimal control of a system (Cryer and Chan, 2008).

A unique feature of time series and their models is that we usually can not assume
that the observation arise independently from a common population (or from
populations with different means, for examples), that means, the observations are

dependent and the order of the observations is, therefore, important (Wei,1990).

1.2 ARIMA Models

The autoregressive integrated moving average (ARIMA) models are considered

one of the most popular models used in time series analysis. The seasonal ARIMA

model with orders (p, d, q) x (P, D, Q), is the most general form of ARIMA models
written as:

®,(B°)4,(B)(1-B)* (1-B*)° X, =6, +®,(B*)0,(B)a,, (1.1)

where, @ is the period, ®,(8%),¢,(B ),@,(B%) and &, (B) are the seasonal

autoregressive (AR), ordinary AR, seasonal moving average (MA) and ordinary MA
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operands, respectively, ¢, is a constant, d and D are the ordinary and scasonal
differencing  orders respectively, and {a,} is a sequence of independent and

identically distributed random variables with mean zero and variance of (Box et al .,
1994).

If D=d=0 and w =1, then equation (1.1) is reduced to the ordinary ARMA model

with orders (p,q), denoted by ARMA(p,q) and written as:

X =6 +$ X+ X, , +.. 49, X, +a,~0a,  ~0a, ,—..~0a

p - r-p g I-q"

The pure AR(p) and pure MA(q) models are special cases of the ARMA(p,q) model
when assuming q = 0 and p = 0 respectively. For instance, the AR(1) model can be
writtenas X, =6, +¢,X, | +a,.

In general, ARMA(p,q) model is used for modeling stationary time series. In fact,

there are two types of stationarity, namely strict and weak stationarity, but in practice

we usually deal with the later type.

Let {X r} be a stochastic process with mean g, and autocovariance function
7(,t)=Cov(X,,X, ). Then {X,} is said to be weakly (covariance) stationary if ,
is constant and the autocovariance function depends on time lag only. Thus, for
stationary stochastic process, the mean, variance and the autocovariance function are
denoted by u , ¥, and y, respectively where 7, = Cov(X,,X,.);k=0,£1,%£2,...
(Cryer and Chan, 2008).

For ARMA(p,q) processes, a sufficient condition for stationarity is that all roots of

¢,(B)=0 should lie outside the unit circle. For example, the condition for AR(1)
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reduces to 4| <1. Also, as a special case of ARMA(p,q) process, the pure MA process

are always stationary (Wei,1990).
A very important example of a stationary process is the so-called white noise
process (WN), which is defined as a sequence of independent and identically

distributed random variables {g,} with zero mean, constant variance o?. Although

the process rarely occurs in applied time series, it plays an important role as a basic
building block in the construction of time series models (Wei, 1990).

Finally, for stationary stochastic processes the autocorrelation function (ACEF)

denoted by p, is:

pe =12 [ =0,1,...

0

In the next chapter, we will extensively study this function for ARMA processes.

1.3 PARMA Models

The periodic ARMA (PARMA) model is an extension of the ordinary ARMA

model that is suitable for modeling seasonal time series. This model consists of @
equations, where @ refers to the period.

Writing t as (j@ +v )} then the PARMA, , (p(v ), q(v )) model is written as :

(1 = ¢1 (V)B e ¢p(v)(V)BP(V)) (Xja:+v - pjww )

= (1-6,0)B-..~0,,0)B ..., (1.2)
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where v=10....00 denotes the season, j=0,1 .. stands for the year, 4, 1s the mean

of season v, {a MW} is a periodic white noise process with zero mean and periodic

variances o ; p(v) and g(v ) are the AR and MA orders of season v respectively.
The constant order models PARMA , (p,q), PAR , (p), PMA , (q) as well as the

ordinary ARMA (p ,q) models are special cases of the model in (1.2). As for the

AR(1) model in context of ARMA models, the PAR _ (1) could be the most important
model among PARMA models. For instance, the zero-mean PAR (1) model is given
by:

ij+v = ¢1 (V)ijﬂ'—l + ajw+v :
For example, taking @ =4, then the zero-mean PAR4(1) model is written explicitly as:

Xn=6,(0X (-yass T O j4+l\
X2 =X, +a;,,
X2 =00 X 4n +a,,,
X 44 = ${4)X FTIC Sl TV ]

(1.3)

In practice, there are several motivations for using PARMA models instead of the
seasonal ARIMA model for modeling seasonal time series. The first motivation is that
periodic models have to do with seasonal adjustment (Franses and Paap, 2004). The
second motivation is that the PARMA model is not a homogeneous model for all
seasons (as the case for seasonal ARIMA models), it is rather designed for seasonal

time series in a more natural way so that each season has its own equation (Smadi,

2002).
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Also, there are many differences between seasonal ARIMA and PARMA models.
For instance, using an appropriate differencing for the seasonal ARIMA meodel will
make it stationary, while differencing the series of PARMA model produces again
another PARMA model.

PARMA models are not stationary in the ordinary weak sense. They are rather
examined for a weaker type of stationarity named as periodic stationarity. This means
that the mean and the variance of the time series are constants for each season and
periodic with period @ and the autocovariance function depends on the time lag and

season only. The periodic stationarity of any PARMA model can be examined using

the lumped processY; = (X3 X jpupses X jM,)T , which in fact follows an @ -variate

Jjo+l?

ARMA model (Ula and Smadi, 1997). For instance, the periodic stationarity condition

ﬁ¢1 v)

v=l

for the PAR (1) model, exemplified in equation (1.2), reduces to <l

(Obeysekera and Salas,1986).

1.4 Aims of the Study

The aim of this study is to develop a robust estimator for the seasonal
autocorrelation  function of periodic autoregressive models. This requires
mathematical derivations and manipulations. Besides, we will use Monte-Carlo
simulation for the comparison and evaluation of various estimators of SACF.

Many factors will be investigated in the course of the study, including the type of
PAR model, namely PAR(1), PAR(p) and varying orders PAR models. Also the effcct
of changing realization length of the time series, N as well as the period length, @,

and the place of the additive outlier on the estimators for the SACF are investigated .
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1.5 Overview

The general forms and the stationary conditions the of ARMA model and its

extension the PARMA model, are discussed in chapter one. In chapter two, we
discussed ACF and partial autocorrelation function (PACF) of ARMA as well as
seasonal autocorrelation function (SACF) and seasonal partial autocorrelation
function (SPACF) of PARMA models, also we discussed their roles in identification
of ARMA models and PARMA models respectively and some general and sampling
properties.

In chapter three, we generalize the work of Berkoun et al. (2003) for finding a
robust estimators for AR(1) to find a robust estimator for SACF in the case of PAR(1)
model. Afterward we find a special formula for finding SACF. We use the Monte-
Carlo simulation to identify the most appropriate robust estimator via bias and MSE.
The generalization of the work of chapter three to higher orders PAR model is done in
chapter four including generalizing the formula of Berkoun et al. (2003). In chapter
five we applied our work on some real time series data.

Finally, in chapter six we summarized our results and suggest some problems that

deserve further investigation and study.
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CHAPTER 2

The Autocorrelation and Seasonal Autocorrelation
Functions

2.1 Introduction

In time series analysis, one of the most important steps is to identify a suitable
model based on an available realization. For ARMA models, the autocorrelation
function (ACF) and partial auto correlation function (PACF) play a primary role in the
identification method (Box et al., 1994). Similarly, for PARMA models, two
analogous functions; namely the seasonal autocorrelation function (SACF) and the
seasonal partial autocorrelation function (SPACF) are utilized for the identification of
the seasons orders of PARMA models (Hiple and Mcleod, 1994).

In this chapter, we will review various issues of the ACF and PACF for a
stationary time series as well as SACF and SPACF for a periodic stationary time

series.

2.2 ACVF and ACF of Stationary Time Series

Downbelow, we assume that {X (ot =0,il,i2,...} is a stationary stochastic
process.
Definition. 2.1: The mean function of {X,} is defined as:
E(X,)=n

forallt,
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Definition. 2.2: The autocovariance function (ACVF) of {X ,} is (Cryer and Chan,
2008):
7 =Cov(Xe Xus=BIXi- ) Xea- W)-

Note that for k=0, y,=Cov(X; ,X)=Var(X;).

Definition. 2.3: The autocorrelation function (ACF) of {X ,} is defined as (Cryer and

Chan, 2008):

ColX, Xiu)  _ 2

= == ;ik| =0,1,2,...
Pr \/Var(X,)Var(X,_J Yo Ikl

In general the covariance and the correlation are two measures of linear association
between two random variables. However, the correlation is usually preferred because
it is vnitless and easier to interpret. Similarly, for stationary stochastic process, the
ACF is usually preferred. The graph of k vs p,; k=0,1,2,... which is known as the
correlogram is a very important graph for model building and identification.

For a stationary process {X ,} the ACVF and the ACF have the following
properties {Wei, 1990):

Ly, =Var(X,); p, =1.
2l <70 o <1
3.7 =745 P =Py forallk

4. y, and p, are positive semi-definite functions.

For various ARMA models, there are closed formulas for the ACF. Besides, there

are general patterns in ACF that are usually used in practice for identification ARMA
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models, Table (.1) below summarizes the ACVE and ACF of some simple ARMA

models.
Table (2.1): The ACVF and ACF of some simple ARMA models
Model ACVF ACF
White e x=0 1 k=0
Noise "Z1o x>0 PeZV 0 k>0
2
o, _
1-¢* k=0 { 1 k=0
Ve = 2 Pr= &
kz1
AR(I) o-a - ¢k k 21 ¢
1-¢
(1+6))s? k=0 1 k=0
7i =3 -6o; k=1 Py = _92 =1
MAQ) . 5 1+
0 k22
- -
1-¢
y=) (0000 & 1 k=0
1-¢ £ =1(1-09@-6) M k>l
ARMA(1,1) [ k22 . 1-20p+ 6 -
\

An important fact regarding the ACF of ARMA models is that for MA(q) model
the ACF cuts-off after lag g, while it has no cut-off for AR or mixed ARMA models.

Also, the ACF of white noise process cuts-off after lag zero. This fact in practice is
usually used to examine whether any time series is a white noise process or not. It is
also used for examining independence among residuals of fitted ARMA models.

For a detailed account on ACF of various ARMA models and its properties, see

Cryer and Chan (2008).
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2.3 PACF of Stationary Time Series

Another important function that is usually estimated for a stationary time series is
called the partial autocorrelation function (PACF), which is used to investigate the
correlation between X and X after removing their mutual linear dependency on
their intervening variables X1 ,Xw2,..., Xeskt- The computation of this function

depends mainly on the ACF.

Definition.2.4: let {X,} be a stationary stochastic process, then the partial

autocorrelation between X; and Xy is:

= COV(X‘ _‘XA’I’XH‘E _}Evri)

¢ 5
“ Jvar(x, - X))

s k=0,1,2,...

where:

~

X, =X, +a,X,, +o 4 X s

and,

-

X

t+k

=a, X,

14k-1 + a2X1+Jz-2 +'"+ak—le+l .

where X, and X,,, are the best lincar predictors of X and X respectively in view
of XityeeoXerr and g (ISiSk-l) are the mean squared linear regression

coefficients (Wei, 1990).

Also, ¢,, satisfies:

10
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Pu

1 b B P B
AL gy P

Pra Pra2 P 0 B P s k=2,
1 PL Pt Dis Py

P 1 Pr o P P
Pria Pra Pia Py 1

(2.1)

Another method for the computation of the PACF, Gy » 15 @ recursive method

given independently by Durbin (1960) and Levinsion (1947) (see also, Cryer and

Chan, 2008).
The PACF is also important for identification the suitable ARMA models. It is

usually used together with the ACF to identify tentative ARMA models. The PACF of

AR(p) models has a cut-off after lag p whereas it has no cut-off for MA or mixed

ARMA models. For detailed account on PACF for ARMA models see Wei (1990).

Table (2.2) summarizes general patterns of ACF and PACF for various types of

ARMA models. These pattems are usually used in practice to identify suitable ARMA

models.

Table (2.2): General behaviors of ACF and PACF for ARMA process

WN MA(q)

Process | AR(®) Process Process ARMA(p,q)

Cuts off Tails off. Cuts off after Tails off.
ACF after lag

lag q.
zero.

;:f;l; ;:1 T cus off after Tails off. Tails off.

PACF roro lag p.

11




© Arabic Digital Library - Yarmouk University

2.4 Sample ACF and Sample PACK of Stationary Time Series

Let {X,} be a stationary stochastic process and {X,,...,Xn} be an observed

realization of {X ,}. Then, the mean of the stochastic process E(X,) =y is estimated

by the sample mean (Box et al., 1994):

Ic

T=1ivx
n

=1

Also, the variance of {XX,}; 7, =Var(X,)is estimated by:

. 13 =
Fo=Co==D (X, - D%,
=1

Similarly; the sample ACVF, 7, , is given by:

}; ~C ZZ:’:(XI —XXXHR' _f)
I 2

s k=0,1,2,...
n

and finally the sample ACF is defined as;

n—k = 7
= Z!:I (X' _X XH‘: _X), k=0,1,2,... (2.2)

ZL (Xr "/?)2

=

1

The above estimators of the mean, variance, ¥, and p, are known as the moment

estimators (Wei, 1990).

For stationary Gaussian processes, Bartlett (1946) has shown that for k >0 and

k+j>0:

12
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1 ©
COV(?' rk+j ) = ; E (pl'pi+j + pi+k+jpi—t
FET: .Y

~201P:Pitj = 2Pkss PiPik + 201 Pras Pr) (2.3)
so that,
1 &y,
Var (r k ) ~ " .Z(pi + PPk —4PL Ly + 200 0] )
(2.4)

For the white noise process, equations (2.3) and (2.4) give:

Var(r,()z1 and Com(r ,n, )=0 fork, #k,.

o

Besides, for a process following MA(q) model, (2.4) reduces to:

Var(rk)z—l{l+2ipj2} fork>q.
n

=
The results in (2.3) and (2.4) are obtained asymptotically. For large n, F is
approximately normally distributed with mean p, and variance given by (2.4).
However, it is observed that for white noise and small time lags 1/n over estimates
Var(r,), while r, and r, can be highly correlated for small lags k and j.
To obtain the sample PACF, denoted by gﬁm we can use Durbin-Levinsion

recursive formula with g, replacing p, which is given by (Cryer and Chan, 2008):

PR
. =D -1¢t—u"k—f
¢k,k 1— k=1 2
Z =1 *-11 J

with

5511 =7 and Sﬁk,j =(gt-1,j _ék,l:ék—l,t-j: =L, kL

13
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The sample ACF and sample PACF play an important role in the Box-Jenkins
methodology for building ARMA models, especially for the identification and
estimation phases. Previously, we have summarized general patterns of ACF and
PACEF of various ARMA models.

The MA(q) model can be identified via the sample ACF, r, . If , falls within the

q
95% confidence bounds +2S.E(r,) =12 —1—[1+22ng for k>q. Notice that, the
n = ,

confidence bounds for identifying MA(q) models get wider as q gets larger. In
practice, if all #, falls within £2/ Jn then a white noise model is identified (Cryer

and Chan, 2008).
Quenoulle (1949) has shown that, under the hypothesis that an AR(p) model is
correct, the sample PACF at lag greater than p are approximately normally distributed

with mean zero and variance 1/n. Thus for k>p, to test the null hypothesis that an

AR(p) model is correct, we can use +2/ Jn as 95% confidence bounds (Cryer and
Chan, 2008).

Also, the sample ACF may indicate non-stationarity of the time series due to the
presence of frend and/or seasonality. In this case, the time series is usually differenced
so that it becomes stationary. Therefore, the ACF is sketched again to identify a
suitable ARMA model (Wei, 1990).

Another important role of the ACF is that it is used for moment estimation of

parameters of ARMA models.

For example, consider the AR(2) model, it can be shown that,

p=¢+pd, and p,=pd +4,.

14
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Thus, the moment estimates of ¢, and 4, are obtained by replacing p, and p, with

7, and r,, respectively, then solving for ¢ and #,. This gives (Cryer and Chan,

2008):

2.5 Seasonal ACF and Seasonal PACF

Let {X } be a periodic stationary process, then two functions similar to ACF

Jotv
and PACF are developed here and named as the seasonal autocorrelation function
(SACF) and seasonal partial autocorrelation function (SPACF). The seasonal ACVF
(SACVF) is defined as (Franses and Paap, 2004):

Vi (V) = Cov(Xjajw szmw—i:)
= E[(Xja}w - #v XXjaHv—k - Pv—l’ )]

where k=0,1,... is the time lag, o is the period and v=1,2,...,@ stands for the season.

Note that for k=0, y,(v) denote the variance of the process for seasonv .

The scasonal ACF (SACF) which depends on the time lag and season only, is defined

as (Franses and Paap, 2004):

P ) = COrr(X s X ) = —— sy =1,2,..,0.

J7. 07, v =&y’

Similarly, the seasonal PACF (SPACF) is defined as (Cryer and Chan, 2008):

X,

X, Jwrv—k+l )

i

P (V)= Corr (X RS G

15
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¢u (V) = CO}?‘(EMV ’3jw+v—l- )

~

where & v =X jy K oy Cporat = X pprvk =X porv- and X, and X, are

the best MSE predictors of X ,,, and X based on the set {X RPN, G },

Jwrv=k
respectively.

Now, to define the sample SACF for periodic processes, let {Xl,...,Xm} be an

observed realization of {X v }

Definition. 2.5: The sample seasonal autocovariance function Cy(v) is given by (Ula

and Smadi, 2003):

i (Xjn;l+v - Iv )(ij.w_j; - f.,_k )
Hr(@)=C(v)= 2

n

and the sample periodic variance is:

n—} _
Z(ijw HXV)Z
7o) =C, ) = o :

where X, is the sample mean of the time series in season v and n is the number of

years of data.

Definition. 2.6: The moment estimate of pi(v), or the sample SACEF, is given by (Ula

and Smadi, 2003):

“ = = 7:(v) = G() . 2.5
) e 7B JG®) Cor—B) -

16
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If iX ,.W} is Gaussian, 1., if the whitc noise terms arc independent and normally
distributed, Pagano (1978) showed that, for all vand k, #,(v)is consistent estimator
for 7,(v). It is also known that X, is an unbiased and consistent estimator of 4,
under periodic stationarity conditions.

For large n, replacing the sample means and variances, X, and 7(v) in #,(v)
with u, and y,(v) respectively, then,

E(r, (1)) =2 220k0)

oy (v),

where o(v,k,@)=[[k —v/o]]+1 and [[x]] stands for the greatest integer below or
equal to x. Since ¢@(v,k,w) is a fixed quantity for vandw, then r,(v)is
asymptotically unbiased estimator for p, (v} (Ula and Smadi, 2003).

Also, under the condition E(X .

Jjo+v

)=0 and fork; >k;>0, we have,

n—-1-b
Corr, (Vr O~ Y [—@]{pm(v)pm,_h k)
m=a—{(n—1)
+ Pty D Pros. (v =)} 2.6)

where,

a-b-m, a-(n-1)<m<a-b
n{m) =140, a-b<m=x<0 ,
m, m>0

17
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a=p.k.o) and b=pW ko). f k =k =k and forlargen, (2.6) becomes (Ula

and Smadi, 2003):

oty )= 1O 25 o1 s s - 27

m=1

Thus, for the seasonal white noise process, (2.7) reduces to:
1
Var(rk (V)) r—,
n

Sakai (1982) proposed an algorithm for computing the SPACF, ¢y, (v), iteratively.

Besides, Sakai (1982) proved (under the assumption of white noise terms being
independent and normal) that similar to ordinary PACF for AR models, if a season v
follows an AR(p(v)) model, then for all v and k> p(v), the SPACF are
asymptotically independent for each k and v, and normally distributed with mean
zero and variance 1/n. This result is helpful for the identification of PAR models.
Finally, the identification of PARMA models follows a similar approach to that of
ARMA models. The main difference is that for a periodic time series with petiod @,
we sketch @ pairs of graphs for the sample SACF and sample SPACF for each season
separately. Then, for season v, a cut-off in SACF usually indicates a MA model and a

cut-off in SPACF indicates an AR model. Moreover, if all values of SACF and

SPACF falls within £2/+/n , then a white noise model is identified.

2.6 The Sample SACF of Seasonal White Noise Process

We have seen that for seasonal white noise process the variance of the sample
SACF for each season asymptotically equals 1/n. In this section, if the process is a
white noise process, we will use Monte-Carlo simulation to investigate the accuracy

of 1/n as an estimate of the Variance of 7, (v) for different realizations length.

18
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Therefore we are going to generate data {X,.., X} from a seasonal white noise

process for period equal four. Then using the simulated data to calculate the sample

SACEF and their variances.
As far as the simulation-work is concemned; 1000 realizations each of length n

years (n= 30, 50, 100) will be simulated from white noise process that is assumed

normal with mean zero and periodic variances 2. In each simulated realization, the
estimate of p,(v) is computed, namely r, (v) as given by (2.5). Then, based on the
1000 iterations, the mean and variance of r,(v) are computed. Also, the ratio of the
variance of r,{v) to 1/n is obtained. Here, we will consider the seasonal white noise

model with @ =4; 2= 1, 64, 4, 9, denoted as Model 1.

Tables (2.3)-(2.5) and Figure (2.1) present the results. Figure (2.1) presents the

mean of r,(v) for Model 1 when n=30, 50, 100. Tables (2.3}, (2.4) and (2.5)
summarize the variances and differences between the varances of 7(v) and 1/n

(given in brackets) of r,(v) for white noise process of Model 1 where n=30, 50, 100.

19



Figure (2.1): The mean for r, (v) for Model 1 (~—: n=30, — —: n=50, -—: n=100)

Table (2.3): The variance and differences with respect to 1/n (given in brackets) for
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r(v) of white noise process of Model 1 and n=30

Season

Lag 1 2 3 4
1 .0332 0.0357 0.0344 0.0347
(-0.0002) (0.0024) (0.0010) (0.0014)

2 0.0324 0.0347 0.0349 0.0340
(-0.0009) (0.0014) (0.0015) (0.0007)

3 0.0343 0.0333 0.0313 0.0346
{0.0010) (-0.0001) (-0.0021) (0.0012)

4 0.0279 0.0286 0.0298 0.0298
(-0.0055) (-0.0047) (-0.0035) (-0.0036)

5 0.0288 0.0300 0.0360 0.0345
{(-0.0045) {(-0.0027) {0.0027) (0.0012)

6 0.0315 0.0332 0.0303 0.0332
(-0.0018) (-0.0001) {-0.0030) {(-0.0001)

0.0346 0.0311 0.0314 0.0338

7 {0.0012) (-0.0023) (-0.0019) (0.0005)

3 0.0303 0.0291 0.0295 0.0299
(-0.0031) (-0.0043) (-0.0038) (-0.0035)

9 0.0317 0.0337 0.0328 0.0325
(0.0017) (0.0004) {-0.0005) (-0.0008)

10 0.0304 0.0305 0.0342 0.0298
(-0.0029) {-0.0028) (0.0009) (-0.0035)
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Table (2.4): The variance and differences with res

r, (v) of white noise process of Model 1 and n=50

pect to 1/n (given in brackets) for

Season

Lag 1 2 3 4

1 0.0203 0.0199 0.0205 0.0203
(0.0003) {-0.0001) (0.0005) (0.0003)

2 0.0194 0.0210 0.0220 0.0202
{-0.0006) (0.0010) (0.0020) {0.0002)

3 0.0195 0.0203 0.0200 0.0228
(-0.0005) (0.0003) {0.0000} (0.0028)

4 0.0179 0.0173 0.0200 0.0182
(-0.0021) (-0.0027) (0.0000) (-0.0018)

5 0.0198 0.0217 0.0194 0.0212
(-0.0002) {0.0017) (-0.0006) (0.0012)

p 0.0199 0.0197 0.0194 0.0197
(-0.0001) {-0.0003) {-0.0006) {(-0.0003)

7 0.0194 0.0184 0.0205 0.0200
(-0.0006) (-0.0016) (0.0005) {0.0000)

0.0188 0.0182 0.0186 0.0193
8 (-0.0012) (-0.0018) {-0.0014) (-0.0007)

9 0.0190 0.0188 0.0188 0.0179
(-0.0010} {-0.0012) {-0.0012) {-0.0021)

10 0.0193 0.0193 0.0197 0.0174
(-0.0007) {-0.0007) {-0.0003) (-0.0026)

Table (2.5): The variance and differences with re

r(v) of white noise process of Model 1 and n=100

spect to 1/n (given in brackets) for

Season

Lag 1 2 3 4
1 (.0105 0.0100 0.0101 0.0103
(0.0005) (0.0000) (0.0001) (0.0003)

2 0.0092 0.0108 0.0098 0.0101
{(-0.0008) {0.0008) (-0.0002) (0.0001)

3 (.0098 0.0102 0.0101 0.0112
(-0.0002) {0.0002) {0.0001) (0.0012)

4 0.0097 0.0099 0.0093 0.0098
(-0.0003) (-0.0001) (-0.0007) (-0.0002)

5 0.0095 0.0097 0.0092 0.0097
(-0.0005) (-0.0003) {-0.0008) (-0.0003)

6 0.0096 0.0105 0.0090 0.0094
(-0.0004) (0.0005) {-0.0010) (-0.0006)

" 0.0101 0.0103 0.0105 0.0099
(0.0001) (0.0003) (0.0005) {-0.0001)

0.0091 0.0101 0.0096 0.0057
8 {-0.0009} (0.0001) {-0.0004} (-0.0003)

9 0.0102 0.0096 0.0100 0.0097
(0.0002) (-0.0004) (0.0000) {-0.0003)

10 0.0100 0.0092 0.0053 0.0103
(0.0000) (-0.0008) (-0.0007) (0.0003)
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From Figure (2.1) e can s¢6 that the mean of r,(v) of the white noise process

closes to zero as n increases for all seasons.

From Tables (2.3)-(2.5), we can see that the variances of #,(v) of the white noise

process are fairly close to 1/n. For instance, in Table (2.3) the variances are close to

1/n= 1/30= .033. Also, in Tables (2.3), (2.4) and (2.5) the differences between

Var(r,(v)) and 1/n are very close to zero for all seasons specially as n increases.

22
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CHAPTER 3
Robust Estimation of SACF of PAR (1) Model

3.1 Introduction

Estimation and test procedures are said to be robust if they are little influenced by
blatant departures from assumption. Those procedures aim to minimize the influence
of outliers or anomalous observations when these lead to break down in basic

assumptions while performing at the same time as well as the optimum methods when

assumptions hold (Sprent and Smeeton, 2001).
It is known that time series data may be contaminated with outliers which affect all

the stages of time series analysis, such as the model identification, estimation and

forecasting.

For time series, two kinds of outliers can be distinguished, namely additive outliers
and innovative outliers. These two kinds of outliers are often abbreviated as AO and

10, respectively.

An additive outlier occurs at time T if the underlying process is perturbed

additively at time T, so that the data equal

Y=Y, +A B(T)
where {¥,} is the uncontaminated process, {7} denotes the observed, contaminated
process that is affected by the outlier, A, is the magnitude of the isolated, additive

outlier and £,(7) is the pulse function,

t=T

1,
P(MN=
(1) {0, Otherwise
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On the other hand, an innovative outlier occurs at time T is an event whose effect

is propagated according to the structure of the model of Y. Thus, the innovative

model is,

Y=Y +A(T)

where {¥,} is the uncontaminated process, {r/} denotes the observed, contaminated

t

process that is affected by the outlier, A, is the magnitude of the innovative outlier

and

1, t=T
0, t<T

I(D)= {
Thus, an innovative outliers at T perturb all observations on and after T.

The impact of outliers on the parameter estimation of ARIMA models has been
studied by several rescarchers including but not limited to Denby and Martin (1979),
Chang and Tiao (1983), Martin and Yohai (1986), Pena (1983, 1990, 1991), Bamett
and Lewis (1994), Bianco et al. (1996) and Mira and Sanchez (2003).

Several robust estimation procedures for ARMA model parameters have been
proposed along the line of Huber (1964) for location parameters. Denby and Martin
(1979) proposed the genelized M-estimates for autoregressive processes and Bustos
and Yohai (1986) took the autocovariance structure of time series into consideration
when robustifying the estimators. While robust estimation for PAR models is rarely
studied, Shao (2007) proposed a robust estimation method for PAR(p) model
parameters.

Berkoun et al. (2003) investigated robust inference for serial correlation in AR (1)
process in the presence of a single additive outlier. Assuming that {Z,,.. .wZn} is a time
series following the zero-mean AR(1) model contaminated with a single additive

outlier, they have investigated three estimators for p;, namely:
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=il (3.1)
zZ.,
t=2
Z, Z Z
5=Med{—%,—3,..., } - (3.2)
1 ZI ZZ Zn-l

. Med{z,2,2,2,,.,2,Z,}

- 33
o Med(zh, 22,2 G-3)

where Med{.} stands for the median, g, is the ordinary moment estimator of p;
while 7, and j, are two robust estimators of p; originally proposed by Hurwicz

(1950) and Haddad (2000), respectively.
In this chapter, we are interested in robust estimation for the SACF under PAR

models. More specifically, we interest to generalize the work of Berkoun et al. (2003)

for PAR _ (1) and other PAR models, then we are going to estimate the SACF, p,(v)

for various seasons and time lags.

3.2 Robust Estimation of £,{v) in PAR(1) Model

Assume that [X ,,,,} follows PAR (1) model as defined in (1.3) and define {Z,,,,}
to be the same as {X ,y} but contaminated with an additive outlier Aat year t; and

season Vv, i.e,

7 = X;,w (£,v) # (29, v,)
" X, +4, (&v)y={,v)
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Accordingly, we want to estimate the SACF of {Zw]; 1.e. P (v) , k21,

Smadi et al. (2009) investigated robust estimates of the first lag SACF of

PAR (1) which denoted by p,(v). Corresponding to the estimates of P under AR(1)

model which are considered by Berkoun et al. (2003) and given by (3.1)-(3.3), Smadi

et al. (2009) proposed the following estimates of p,(v):

o S 2N -2 o
\/Z—l f"__v Z:;(Z:v- Zv-])

Med Z5 3.5)
M dlz?)

A v)= Med{ aY ]

Med{ lv—l} (3 6)
JMed w Med{ !v-l}

where Z,, = Z,, ~ Med {Z,,,,},t =1,...,n is the seasonally median subtracted time
series and M:ed {Z,,V} is the median of the data in season v;v =1,...».

The estimator p,(v) in (3.4) is the moment estimator of p, (v} which corresponds
to the estimator g, (v) that is given by (2.5) for k=1. Also, the estimator 5,(v) is a

generalization of p, for AR(1) model which is given in (3.2) which makes use of the

fact that for PAR _ (1) model

£ =40).|L °("( )” . 3.7)
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The estimator 5,(v) in (3.6) is a generalization of 5, for AR(1) model that 1s

given by (3.3).
By using Monte-Carlo simulation, Smadi et al. (2009) showed that the ordinary

moment estimator p,(v) is affected by the additive outlier while the other two
estimators were apparently robust to the existing of outliers. As reported by Smadi et
al. (2009), the estimator g,(v) was the best estimator among the other considered
estimators for almost all considered cases. Therefore, our objective in this chapter is

to estimate the SACF, p, (v) for all time lags k for the PAR , (1) model.

Theorem (3.1): If {X jmw} follows a periodic stationary PAR , (1) model, then the

pk(v)=¢,(v)1/”;(:( )‘%H(v -1)

=A (V)pl (v _l)pl (V - 2) pl(" —k +1)'

SACF at lag k is:

Proof. It is easy to show that the first lag seasonal autocovariance function, SACVF,

71() Cov(XlV’X!V—l) Cm’(ﬁ’l V)X!v-l+alv s Lvl) ¢1(V)70(V 1)

then the first lag SACF,

v 7’1(") 9'*"1(‘/)70(" 1) Yol —1) -1
iy o o o R o o L e o R

and the second lag SACVF,

7’2(‘})= Cov(ererv-—Z)
= COV(¢; ( ) ty-1 + a., ’X!,V—Z)
=407 (V -1)
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So that the sccond lag SACE,

p,(v) = 7:(v)
i \f}’o(")?’o("“zj
_ ¢1(V)71(V"1)
\/70("j§"0("‘2j
=¢(V) 71("_1) J?’O(V“I)}’o("_z)
=Dl -2)V 7 -2)

Yolv -1

=4 (V)Pl (V “1) }’o(V)

“¢1(V)1‘ o() Px(" )= Pl(")ﬁl(v 1) (3.9)

and the third lag SACVF,

}’3(V) Cov(er9X.rv—3)
= COV(¢1 (V)X ty-1 +a, BT X 1,v-3 )

=g, (V)}’z (V - 1)
So that the third lag SACF,

2, ()= 7:(v)
’ '\/70(")70("_3}
_ #.lv-1)
V7)o (v -3)

=@ (V) },;0 (V) P (V 1)

= p(V)pa (v -1)

=p (V) (v -1)p, (v -2) | (3.10)

In the same manner of deriving (3.8)-(3.10), p,(v) for PAR (1) model can be

written as:
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i) =) ”—;,ﬁpk-.(v—l)
=pV)pi,(v-1) k21
In general,

£ )=o) -p v -2).. p v -k +1)

Note that in AR(1) model, p, =¢* andg=p, so p, =pf. In PAR (1), if the
model is non-periodic then p,(v)=p,(v-1)=..=p, (v —k+1)= p, . Consequently,
2. ) = p (V) (v -1)p, (v - 2).. (v =K+ 1) =y =

To estimate p,(v) under the PAR (1) model, we proposed and studied the

following estimators:

A(v)= B, )P, (v =1) (3.11)
Bv)= BB -D) (3.12)
A )= BB (v -1) (3.13)

Where the estimators g,(v), p,(v) and p,(v) are given by (3.4), (3.5) and (3.6)
respectively. So, we can compute (3.11), (3.12) and (3.13) for different time lags.

3.3 Methodology and Simulation Results

In this section we used the Monte-Carlo simulation to generate data from PAR , (1)

model of several period values and contaminated with some additive outliers. The
simulated data are used to calculate the estimators (3.11), (3.12) and (3.13) for

different time lags. After that we study the robustness of those estimators on the basis

of bias and MSE.
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As far as the simulation-work is concemed; 1000 realizations each of length n
years (30, 50, 100) will be simulated from PAR , (1) models assuming that the white
noise process is normal with mean zero and periodic variances o’. In each
realization, some outliers with fixed magnitudes are added at specific times. Now, in
each simulated realization the estimate of p,(v) is computed, say 7, (v). Then, based

on the 1000 realizations, the bias mean (or absolute bias mean) and MSE are
computed.

In order to investigate the behavior of the three estimators (3.4), (3.5) and (3.6) we

will carry out simulation based on the following PAR , (1) models:

(1) PAR (1) with ¢'s: 1.1,-0.8, 0.95, 0.7 and of's: 1,64,4,9.

(2) PAR , (1) with ¢'s: 1.1, -0.8, 0.95, 0.7, 0.4, 1.1, 0.45, 0.33, 0.9, 0.7, 1.2, .77
and o?'s 1 1,64,4,9,1,16,4, 4,36,16,9, 36.

The above two PAR models are chosen to be periodic stationary satisfy

condition <1. Regarding to the existence of the additive outliers we will take

fI #(v)

v=l

the following cases,
Case 1: A single additive outlier {A=100) added at t=13 (season one).

Case 2: Two additive outliers (A;=100, A;=80) added at t=13, 14 (seasons one and

two respectively).
Case 3: Four additive outliers (A=100, A,=80, A;=120, A4=90) added at =13, 14, 15

and 16 (seasons one, two, three and four respectively).

Then we compute the mean absolute bias and MSE as follows:
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i 1 1000
Absolute Bias = 1000 >, ((r} W)); —p:(v)

j=t

and

1000

=000 2 (00, =

To perform the simulation, the R-package is used with codes written by the author and
the supervisor.

In what follows, the models PAR , (1) and PAR,, (1) will be referred to as Model 1
and Model 2 respectively.

Due to the large amount of results, we have summarized the most important results
in Tables (3.2)-(3.8) and Figures (3.2)-(3.18).

Table (3.1) and Figure (3.1) show the theoretical SACF ( p, (v)) for Model 1. Note
that in Figure (3.1) for the four seasons there is a jagged periodic pattern repeated
every four lags and the theoretical SACF decays to zero as time lag increases. Recall

that in the ordinary AR(1) model the jagged pattern in the theoretical SACF appears if

4
the ¢ value is less than zero. Notice here that for Model 1, H¢l (v) =-0.5852 which
v=l

is negative.

The results corresponding to Model 1 are summarized in Tables (3.3)-(3.5) and
Figures (3.3)-(3.12), whereas those of Model 2 are presented in Tables (3.6)-(3.8) and
Figures (3.13)-(3.14).

In Table (3.2) we explore the bias mean of the three estimators (3.11), (3.12) and

(3.13) of p,(v) for Model 1. In view of the results in Table (3.2) it is difficult to

compare the three estimators via the bias mean, Besides, our focus here is on the
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robustness of these estimators not on the nature of their biases. Therefore, for the

remaining results we will restrict ourselves to the absolute bias mean.

Figures (3.3) and (3.4) present the absolute bias and MSE of the three estimators of
the SACF of Model 1 with no additive outlier and n=100, while Figures (3.5)-(3.10)
present the absolute bias and MSE for each estimator separately.

Tables (3.3)-(3.5) presents the absolute bias and MSE (in brackets) of the three
estimators of the SACF of Model 1 with additive outlier at season one for n=30, 50
and 100 and Tables (3.6)-(3.8) contain the bias and MSE for the three estimators

(3.4), (3.5) and (3.6) for Model 2.

Figures (3.11)-(3.12) present the absolute bias and MSE of the three estimators of
the SACF of Model 1 with additive outlier at season one for n=30, while Figures
(3.13) and (3.14) present the absolute bias and MSE of the three estimators of the
SACF of Model 2 with additive outlier at season one for n=30.

Figures (3.15)-(3.16) present the absolute bias and MSE of the three estimators of
the SACF of Model 1 with two additive outlier at seasons one and two for n=30 and
Figures (3.17)-(3.18) present the absolute bias and MSE of the three estimators of the
SACF of Model 1 with four additive outlier at seasons one, two, three and four for
n=30.

In Tables (3.2)-(3.8), the estimators g, (v}, p,(v) and p,(v) which are given by

(3.11), (3.12) and (3.13) are abbreviated as p,, p, and 5, for simplicity.
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Table (3.1): The theoretical values of SACF, p, (v) for PAR,(1) model

Season
Time lag 1 2 3 4
0 1.000 1.000 1.000 1.600
1 0.9932 -0.6516 0.9807 0.9221
2 0.9159 -0.6471 -0.6390 0.9043
3 0.8982 -0.5967 -0.6346 -0.5892
4 -0.5852 -0.5852 -0.5852 -0.5852
5 -0.5812 0.3813 -0.5739 -0.5396
6 -0.5360 0.3787 0.3739 -0.5292
7 -0.5256 0.3492 0.3714 0.3448
8 0.3425 0.3425 0.3425 0.3425
9 0.3401 -0.2231 0.3358 0.3158
10 0.3136 -0.2216 -0.2188% 0.3097
0 2 4 & § 10
season 1*k season 2¥k
- 1,0
- 0.5
0 £ /_’\._\, 0.0
u 0.5
season 3*k season 4%k
1.0
0.5 - \\
0.0 / ‘\ f 0

L/

10

Figure (3.1): The theoretical values of SACF for Model 1
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Figure (3.2): The mean bias for the three estimators for PAR , (1) model .(Model 1}
with n=30 and a single additive outlier at season one (—: 2, (V) , —=—: 7, (v},
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Figure (3.3): The absolute bias for the three estimators for PAR , (1) model (Modell)
with n=100 and no outlier (—: g, (v),——: 5, (v}, —: 5, (V"))
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Figure (3.4):7 The MSE for the three estimators for PAR , (1) model (Model 1) w1th
n=100 and no outlier (—= 5, (v}, ——: 5, (), ~—: 5, (v))
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Figure (3.5): The absolute bias for /,(v) for PAR, (1) model (Model 1) wi
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Figure (3.6): The MSE for p,(v)for PAR,(1) model (Model 1).wi.th. a sm e
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Figure (3.13): The absolute bias for specific seasons for the three estimators for
PAR,,{1) model (Model 2) with a single additive outlier at season one and n=100
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Figure (3.14): The MSE for specific seasons for the three estimators for PAR ,(1)
model (Model 2) with a single additive outlier at season one and n=100 (—: 2,00,

—=:0,(v),~—=:5,())

48



© Arabic Digital Library - Yarmouk University

L)
'f" "-‘---0‘\
L -
. P
’-

b T ]

T

Season 4

— 14 T T
2 R Ry TGN | L g e

Figﬁre (3.15): The absolute bias for the three estimators for PAR4 .(.1) model
(Model 1) with two additive outliers at seasons one and two and n=30 (—: 5, (v),
—— 15, (V) —: 5, (V)
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Figure (3.16): The MSE fof the three esﬁmétors for PAR 1) modeln(M_odel 1) with

two additive outliers at seasons one and two and n=30 (—: 5, (V) , ——: 5, (v},

—:0:(V))
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Figurc (3.17): The absolute biés for the three estimators for PAR , (1) model
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(Model 1) with four additive outliers at seasons one, two, three and four and n=30
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Figure (3.18): The MSE for the three estimators for PAR , (1) model (Model 1) with
four additive outliers at seasons one, two, three and four and n=30 (—: j,(v),
——:1p(V)s—: 5, (V)
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3.4 Results

From Tables (3.3)-(3.5) and Figures (3.5)-(3.10) we can notice that the absolute bias
of the three estimators are decreases as n increases. Also, all the estimators are seem

to be consistent sense the MSE goes to zero as n increases. We can see from Figures

(3.3) and (3.4) that if there is no outliers in the data, then the MSE of the moment

estimator 5, (v) is less than those for the estimators g, (v) and 5, (v) and in almost

all cases the absolute bias of g, (v) is less than that of g, (v) and 5, (v) .

In the case of a single additive outlier, the moment estimator 5, (v)has a greater
bias and MSE in season one while this is not true for the others seasons and the
increasing sample size does not change this fact. So, we can say that the estimators
P, (v) and p,(v) were more robust than the moment estimator A, (v) . This result is
legible from Tables (3.3)-(3.5) and Figures (3.11) and (3.12).

In the two additive outliers case, the moment estimator p, (v) has a greater bias
and MSE at seasons one and two while this is not true for seasons three and four. For
case three which represents the existence of four additive outliers, the moment
estimator 5, (v) has the largest absolute bias and MSE for all seasons while the third
estimator 5,() has the smallest absolute bias and MSE for all seasons (see Figures
(3.15)~(3.18)). In general the second and third estimators are more robust than the
moment estimator in the presence of outlier on the basis of bias and MSE, and the
third estimator 5, (v) seems to be more robust than the second estimator g, (v) in
almost all cases that are considered.

Also, it seems that the same results can be concluded for PAR,, (1) model as can be

seen from Tables (3.6)-(3.8) and Figures (3.13) - (3.14).
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For Model 1, As timg lag increases the absolute bias and MSE for f,(v) decreases

at season one (where the outlier exists) while this is not true for the other seasons. For

£, (v) as time lag increases the absolute bias and MSE seems to be decreases in all
seasons while this behavior not clear for 5, (v) . For season one and for large lags the

absolute bias and MSE seems to be very close for the three estimators, 5,(v), 5, (V)

and g, (v).

Note that our results are true, namely for the selected models and cases.
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CHAPTER 4
Robust Estimation of SACF for Higher PAR Models

4.1 Introduction

In this chapter, we are interested in robust estimation for the SACF for PAR
models with higher orders. More specifically, we will try to generalize our work in
chapter three to PAR models of orders larger than one.

Under periodic stationary, a general formula for PAR model with varying orders

p{v)is given by:

()

Xr,v —H, = Z¢J(VXXr.v4 —/uv-i)+ar,v’ (41)
i=l

where v=1,2....@ denotes the season , =1 ... stands for the years, 4, is the mean of
season Vv, {a,,v} is a periodic white noise process with zero mean and periodic

variances o2. If p(v)=p, V v then the model is the constant order PAR  (p) model.

4.2 SACF for PAR(2) Meodel

Let {X J.W} follows a periodic stationary PAR(p) process, Hiple and Mcleod

(1994) find a general formula for the SACVF for zero-mean PAR(p) models given by:

70)= 80 v -1)+8,0 ). (v -2)+..44,0)r, (v -p) k>0,  (42)

Note that if the model is non-periodic then,

yu(v) =y0(v —1) =, = yo(v —p)= Voo Vv =12,. @.
So that (4.2) reduces to,

Ve =@ViathVia tetd,r, k=12,..p
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Which 18 the ordinary Yule-walker equation for the AR(p) taodel (Cryer and Chan,
2008).

Theorem (4.1); If { JW} follows a periodic stationary PAR , (p) model, then the

SACFatlagk; p,(v) is:

Pk(") ¢1(V)J 0() PH(V 1)+¢2( )"}’oy:(v)z pk-z(" 2)

+...+¢p(v) Uy (;)p p,r_P(v—p), k=1 4.3)

where, p_j(v-p)=pj(v—p+j); j=1,2,...

Proof,

We know that,

y Y }(V)
ALy e ey

then dividing both sides of (4.2) by /y,(v)y,(v-k) , we will get;

o)zl =D, oy rl-p)
Sy vy vy Ay oy Ay sy

So that,

peV)=4,0) “y—:’(;)lp,,.l(v—l)wz(v) “},—;’(;)ipk-z(v—z)

+otd,(v) V"yzv(;)pj pi,v-p) kz1.
0
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The above theorem is vseful for the computation of the theoretical SACT of
PAR _ (p) models for given ¢'s. However the time lag of the SACF, p,(v), may
some times be negative. To overcome this problem we firstly recall that the ordinary
ACF, p, is symmetric with respect to the time lag; i.e. p,=p_, while the SACF,
2, (v) is not, simply because the SACF is a function of time lag and season. It can be

proved that if j > 0 then p_;(v)=p; (v + j). For instance, assuming @ =4;

p3)=Corr(X 4,5, X 4k+3—(-1))
=Corr(Xypaz> X arua)
= Corr(X ypugs X sisa )
=p,(4).

The following corollary is a straitforward result from Theorem (4.1) above for the

PAR , (2) model.

Corollary (4.1): If {X . } follows a periodic stationary PAR , (2) model, then the

Jort+v

SACF atlagk; p,(v) is:
pk(v)=¢l(v)1/”;—("(;)‘5p,,_i(v—1)+¢2(v),/%—~("(;fjpk-z(v—z) 44

Now to clarify the usage of Theorem (4.1) and Corollary (4.1) for the computation of

the theoretical SACF of PAR , (p) models, we consider the zero-mean PAR , (2)

model defined as;

X ja = ¢ (DX (j-1)4+4 +¢, (DX, (144 +ai4+1ﬁ
X2 =0 Q)X ;o + (DX yars + 240
X403 = OO j40a + BV X o 945
Xj4+4 =g, (4)X_,-4+3 +¢, (4)Xj4+2 t 404

L (4.5)
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We have seen previously that the PAR_(1) model is periodic stationary if

f[¢. v)

difficult job. Ula and Smadi (1997) proposed a methodology for this objective by

<1. For higher PAR models checking periodic stationarity is a bit more

utilizing the lumped processes approach so that the periodic stationarity conditions

became an eigen value problem.
Following Ula and Smadi (1997), the PAR,(2) is periodic stationary if all the

cigen-values of the matrix R =L'U, be less than one in modulus, where,

1 1=1 1 0 0 0
L=40 li;J- -4 1 0o 0
— -¢...(0) ovi -#,3) -4,3) 1 0
i-j . 0 ——¢2(4) _¢1(4) 1
and
00 40 4®
090 y) 2
Uy =4, ;)= 00 o ¢2(() )
00 0 0

Therefore, before the computing of p, (v) we should check the periodic stationary

of the model. By assuming the stationarity and to find p,(v) by using (4.4), we need

the values of 761, 76(2), 7,(3), 7o (4), and y,(1), 7:1(2), »1(3),7,(4) . The following

Lemma helps us to find these values.
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Lemma (4.1): Let {X J.W} follows a periodic stationary PAR,, (2) model, then from
(4.5) we have the following equations;

7o) = @, (0)7,(4) + (&, (10) 7, (3) + 26,(Dg; V7, (4 + o7

710 =417, (4) + 6,07, (4.

702 = (#(2) 7,0 +(#, () 7,(4)+24,(24, D, () + 3.

7(2)=4,@7,0) +6,n 1.

70(3) = 6,307, + 30 7,1 + 26,36, ), (2) + 7.

7(3) =407 +4,07.(2).

70(8) = (449 7,3) + (#,(4)* 1D + 26, (), ()5 3) + o7

71(4) = ¢,(4)y,(3) + 6, (4)7, (3)

Proof.

We can find y,(v);v =1,2,3,4 by taking the variance for each equation of (4.5),
and the values of y,{v);v=1,2,3,4by multiplying each equation of (4.5) by the

preceding value, i.e. X, then taking the expectation.

From the above system of equations we can find the unknowns,

7o) 76€2), 7,3, 7o (D), 7,(1), 7,(2), 7,(3) and y,(4) for given ¢'s and crf‘s.

Example 4.1:

Consider the zero-mean PAR,(2) model with ¢,'s= -0.1, 0.8, 0.95, 1.1, 4,'s=

0.8, 0.4, -0.7, 0.3 and o's:1, 64, 4, 9. To check the stationarity for this model we

need the values of R = LU,
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and,

Therefore, the eigen-values of R are: 0.6575912, -0.1021912, 0.0, 0.0. Since all eigen-

0.7

~0.95

0

0

ol
11
00 08
00 064
0 0 0048
0

-0.1
0.32
0.374

0 0.2448 0.5074

values are less than one in modulus, the PAR ,(2) model is periodic stationary.

By using Lemma (4.1), the vales of y,(v);v=1,2,3,4 and y,(v);v=1,2,3,4 are
summarized in Table (4.1). Also, by using Corollary (4.1), the values of the
theoretical SACF are computed and given in Table (4.2). They represented in Figure

(4.1). It can be seen that the theoretical values of SACF for PAR,(2) dies out as the

lag k increases for the four seasons.

Table (4.1): The values of y,(v)and y,(v) for the PAR,(2) model

Yol

7o(2)

7:(3)

7o(4)

7 (1)

nh(2)

n3)

74

43.44

19¢.27

99.85

232,50

95.73

73.04

129.63

148.73
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Table (4.2): The theorctical values of SACE, p,(v) for thePAR, (2) model

Season
Time lag 1 2 3 4
0 1.000 1.000 1.000 1.000
1 0.9526 0.8035 0.9404 0.9761
2 0.9871 0.8063 0.5919 0.9493
3 0.9211 0.8089 0.6175 0.6448
4 0.5688 0.7718 0.6051 0.664
5 0.5954 0.5025 0.5869 0.6557
6 0.5822 0.5212 0.3964 0.6326
7 0.5656 0.5125 0.4086 0.4221
8 0.3831 0.4959 0.4032 0.436
9 0.3947 0.3331 0.3892 0.4298
10 0.3897 0.3437 0.2599 0.4151
And the graph of the four seasons for the ten lag is:
0 _Kv4 & 8 w0
season 1*k season 2%k [ 19
- 1.0
- 0.8
- 0.6
- 0.4
1.2 s2ason 3¥k season 4%k
1.0
0.8+
0.6
0.4
0o 2 4 s 10

Figure (4.1): The theoretical values of SACF for PAR ,(2) model
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4.3 Robust Estimation of p,(V) in PAR(2) Model

In this section we will generalize the estimators of SACF which are given by

formulas (3.4) and (3.6) for PAR,(2) model. The estimator in (3.5) will not be
considered since it is not easy job to generalize it for the PAR,(2) model.

Assuming that {X,,} follows PAR,(2) model as defined in (4.5) and define {Z,,,}
to be the same as {X ,,v} but contaminated with an additive outlier A at year ty and

season v, i.e,

7 - X,,vs (tsv)i(to:vo)
S . G W (RY) B (AR TN

Accordingly, we aim to estimate the SACF of {Z,,v}; 1.e. p,(v); k21.The proposed

estimators for p, (v) are:

)=l 200 ) : (4.6)
e, -2 s 2. -2.)

MEd {Z:,v Z:,v—k }

_ 4.7)
[Med . iMed 2,..)

Py (V)

where Z;, =Z, —Med {Zw},t =1,...,1n is the seasonally median subtracted from time

series and Med {Z, ,,} is the median of the data in season v;v =1,...0.
p ;
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44 Yarying Order PAR Model

Consider the PAR , (p(v )) model of varying orders in {4.1). In this section we will

study the estimation of the SACF of such models. Here we consider the zero-mean
PAR,(2,1,0,2) model defined as:
Xj4+1 =¢1 (I)X(j-l)4+4 +¢2 (l)X(j-1)4+3 +aj4+l‘

X = ¢, ()X jan T84

Xj4+3 =a

-~

(4.8)

FLEX]

Xy = (DX 43 (DX 40 + g

To check if this model is periodic stationary a similar approach to the
PAR,(2) model discussed previously can be applied.

We will deal with this model as a PAR,(2) model but replacing the missing
parameters with zeros, i.e. ¢,(2), ¢,(3) and ¢,(3) are all set to zero. Thus we will use
Lemma (4.1) to find y,(v);v=1,2,3,4and y,(v);v =1,2,3,4 and Theorem (4.1) along

Corollary (4.1) to compute p, (v) for PAR,(2,1,0,2) model.

Example 4.2:

Consider the zero-mean PAR,(2,1,0,2) model with ¢,'s=-0.1, 0.8, 0.0, 1.1, ¢,'s=
0.8,0.0,0.0,0.3 and ¢'s:1, 64, 4, 9.

To check the stationarity for this model we need the values of R =L"U,

1 0 0O 0O 0 0 08 -01
-0.8 1 0 0 00 0 00
L = , Ul =
0.0 0.0 1 0 00 O 0
0 -03 -11 1 00 O 0

and,
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00 08 -0l
0 0 064 -008
00 00 00
0 0 0192 -0.024]

Thus the eigen-values of R are: -0.024, 0.0, 0.0, 0.0. Since all eigen-values are less

than one in modulus, then this PAR,(2,1,0,2) model is periodic stationary.

Using Lemma (4.1), the values of y,(v);iv=123,4 and y(v};v=1,23,4are
computed and summarized in Table (4.3). Besides, using Corollary (4.1), the values
of the theoretical SACF are computed and summarized in Table {4.4). A sketch of it is

given in Figure (4.2).

Table (4.3): The values of y,(v)and 7,(v) for PAR ,(2,1,0,2) model

7e(D) ¥o(2) 7o(3) 7o(4) 7, (1) 7€2) #(3) 7,(4)
3.054 65.954 4.000 19.776 1.542 2443 0.000 4.400

Table (4.4): The theoretical values of SACF, p, (v) for PAR,(2,1,0,2) model

Season
Time lag 1 2 3 4

0 1.000 1.000 1.000 1.000

1 0.1985 0.1721 0 0.4947
2 0.7897 0.0342 0 0.5479
3 -0.1394 0.1359 0 0.0943
4 -0.0240 -0.0240 0 0.0187
5 -0.0048 -0.0041 0 0.0745
6 -0.0190 -0.0008 0 -0,0131
7 0.0033 -0.0033 0 -0.0023
8 0.0006 0.0006 0 -0.0004
9 0.0001 0.0001 0 -0.0018
10 0.0005 0.0000 0 0.0003
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o
L~
Y
o
- 0
[y
o

season 1%k season 2*k
- 1.00
- 0.75
- (.50
- 0.25
0 - 0.00
season 3*k season 4*k
1.00-
0.751
0.50
0.254
0.00 ———o—o—9—0—o—0—+ *r—e—o—o—o ()

Figure (4.2): The theoretical values of SACF for PAR,(2,1,0,2) model

In Figure (4.2), the theoretical SACF for PAR,(2,1,0,2) model decreases and

approach to zero as time lag increases in the first, second and fourth seasons. While
in season three there is a cut-off after lag zero which is the behavior of the white

noise,

As far as the estimation of p,(v) for PAR,(2,1,0,2) model is done, we will use

p.v) and 5,(v) as defined by (4.6) and (4.7).

4.5 Methodology and Simulation Results

In this section we used the Monte-Carlo technique to study the performance of
pev) and 5,(v) of p,(v) for PAR,(2) and PAR,(2,,0,2) models through
absolute mean bias and MSE. Regarding the additive outliers we will investigate the

following cases:
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(I) Asingle additive outlicr at t=13 ( scason onc) and A =100.
(2) Five additive outliers with random magnitudes (assumed U(50,400)) and
random positions (discrete U(1, @ n}) where n is the number of years.
As far as the simulation-work is concerned; 1000 realizations each of length n
years (30, 50,100) will be simulated from our models assuming that the white noise

process is normal with mean zero and periodic variances . In each simulated

realization the estimate of p,(v) is computed, say 5,{v}. Then, based on the 1000
realization, the absolute bias and MSE are computed (which are previously defined in
chapter 3).
In order to investigate the behavior of the two estimators 5, (v) and 5, () we will
carry out the simulation based on the following models:
(1) PAR, (2) with ¢,'s: -0.1, 0.8, 0.95, 1.1. and ¢,'s: 0.8, 0.4,-0.7, 0.3.
and o2's: 1, 64, 4, 9.
(2) PAR, (2,1,0,2) withg,'s : -0.1,0.8,0, 1.1. and ¢,'s: 0.8, 0, 0, 0.3.
and o2's: 1,64, 4, 9.
In what follows the model in part (1) will be referred as Model 1 and the model in
part (2) is referred as Model 2.
All of the PAR models above are chosen to be periodic stationary (see Examples
4.1 and 4.2).
Due to the large amount of results, we have summarized the most important results
in Tables (4.5)-(4.10) and Figures (4.3)-(4.14). The results corresponding to Model 1
are summarized in Tables (4.5)-(4.7) and Figures (4.3)-(4.8), whereas those of

Model 2 are presented in Tables (4.8)-(4.10) and Figures (4.9)-(4.14).
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Tables (4.5)-(4.7) presents the absolute bias and MSE (in brackets) of the two

estimators of the SACF of Model 1 with additive outlier at season one for n=30, 50
and 100, Figures (4.3)-(4.6) present the absolute bias and MSE for each estimator of
Model 1 separately. Figures (4.7)-(4.8) present the absolute bias and MSE of the two
estimators of the SACF of Model 1 with additive outlier at season one for n=30.
Tables (4.8)-(4.10) present the absolute bias and MSE (in brackets) of the two
estimators of the SACF of Model 2 with five additive outliers for n=30, 50 and 100.
Figures (4.9)-(4.12) present the absolute bias and MSE for each estimator of Model 2
separately. While Figures (4.13) and (4.14) present the absolute bias and MSE of the

two estimators of the SACF of Model 2 with five additive outliers and n=30.
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Figure (4.3): The absolute bi.as fof .ﬁk(v) for PAR , (2) model (Mddel 1).-\.vith a
single additive outlier at season one (——: n=30, —— : =50, ——: n=100})
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Figure (4.4): The MSE for 5,(v) for PAR, (2) model (Model 1) with a single
additive outlier at season one (—: n1=30, ——: n=50, ———: n=100)
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Figure (4.5): The absolute bias for p,(v) for PAR,(2) model (Model 1) with a
single additive outlier at season one (—: n=30, ——: n=50, —: n=100)
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Figure (4.6): The MSE for p,(v) for PAR, (2) model (Model 1) wi
additive outlier at season one (—: n=30, — — : n=50, --—-: n=100)
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Figure (4.7): The absolute Bias fof the't\%vct) estimators fof PAR, (2). rﬁodél (Modelrl)
with a single additive outlier at season one and n=30 (—: 5, (v) ,——: 5,(+))
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Figure (4.8): Thé MS-E for the two estimators for PAR , (2) model (Model 1) with a

single additive outlier at season one and n=30 (—: g, () ,——: 5,())
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Figure (4.9): The absolute bias for j, (v) for PAR
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Figure (4.11): The absolute bias for g, (v) for PAR, (2,1,0,2) model (Model 2)
with five additive outliers (—: n=30, ——: n=50, —: n=100)
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Figure (4.12): The MSE for p,(v) for PAR,(2,1,0,2) model (Model 2) with five
additive outliers (—: n=30, — — : n=50, «: n=100)
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Fxgure (4.13): The absolute bias for the two estirhafors for PAR ,(2,1,0,2) model
(Model 2} with five additive outliers and n=30 (—: 5,(),——: 5,(v))
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Figure (4.14): The MSE for the two estimators for PAR , (2,1,0,2) model (Mo
with five additive outliers and n=30 (—: 5, (v) ,——: 5, (v))
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4.6 Results

From Tables (4.5)-(4.7) and Figures (4.3)-(4.6) we can notice that the two
estimators of Model 1 seem to be asymptotically unbiased since the absolute bias
decreases as n increases. Also, both estimators seem to be consistent sense the MSE

goes to zero as n increases. Similar results apply for the varying orders PAR model;
Model 2 as can be seen from Tables (4.8)-(4.10) and Figures (4.9)-(4.12).

In the case of a single additive outlier of Model 1, the moment estimator

£, (v)has a larger absolute bias and MSE in season one in which the outlier was
presented, this fact was true for all n. So, we can say that the estimator 3, (v) of

Model 1 was more efficient than the moment estimator g, (v) (see Tables (4.5)-(4.7)
and Figures (4.7) and (4.8)).

In the case of five random additive outliers of Model 2, we can see that the second
estimator p,(v) has smaller absolute bias and MSE than the moment estimator
D, (v) at seasons one and four, While the bias and MSE are close to each other for the
both estimators at seasons two and three. So, we may say that the second estimator
£, (v) seems to be a robust estimator for p, (v).

For p,(v) of Model 1 the absolute bias and MSE decreases as time lag increases at
season one which contains the outlier and this is not clear for the other seasons which
don’t contain any outliers. While for p, (v) the absolute bias and MSE seems to be

not decreases as time lag increases. For large lags the absolute bias and MSE values
became very close especially at season one.

Note that our results are true, namely for the selected models and cases.
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CHAPTER 5
Application to Real Data

5.1 Introduction

In this chapter we are going to apply our work to real time series data. It is known
that one of the first applications of PAR models was for hydrological time series
(Hiple and Mclead, 1994).

Thomas and Fiering (1962) originally suggested that one could fit PAR (1) models
to monthly (Quarterly) hydrological time series and since our interest is to check the

robustness of our estimators of p,(v) not to find the best model of the data we will

assume our data follows a PAR(1) model. So, our aim is to apply the estimators (3.4),
(3.5) and (3.6) for the SACF of PAR(1) model and compare them via their standard

errors (S.E) for some real data.

5.2 The Data

We chose to apply our methods on a hydrological monthly time series, namely the
monthly river flows of Fraser river at hope. According to Wikipedia:"Fraser River is
the Jongest river within British Columbia, Canada, rising at Fraser Pass near Mount
Robson in the Rocky Mountains and flowing for 1,375 km, into the Strait of Georgia
at the city of Vancouver. It is the tenth longest river in Canada. The river's volume at
its mouth is 112km?® each year (about 800,000 gal/s or 3550 cubic meters per

second)".
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The data expand for 78 years from January 1914 to December 1991 (Hiple and

Mcleod, 1994). For simplicity, we transformed (aggregated) this time series into

quarterly time series such that:

e January, February and March stands for quarter one (Q1).
e April, May and June stands for quarter two (Q2).
o July, August and September stands for quarter three (Q3).

» October, November and December stands for quarter four {Q4).

The time series plot of our quarterly time series is given in Figure (5.1) and a
parallel box-plot of marginal data for each quarter is shown in Figure (5.2). Figure

(5.1) shows an apparent (constant) seasonality with nearly no-trend.
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Figure (5.1): The time series plot of quarterly sums data
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Figure (5.2): The box plot of quarterly (marginal) data
From Figure (5.2) we can see that we have some outliers, three at season one (Q1)
and the other two at season three (Q3). This approach for detecting outliers in such
time series was done for example by Shoa (2007). Also note that the medians for
various seasons are different with the largest at quarter two and the smallest at quarter
one, This means that the largest river-flow is at April, May and June while the
smallest river-flow is at January, February and March. Besides, the variability was the

largest in Q2 and smallest in Q1.

5.3 Methodology and Analysis

Assuming that the quarterly time series of previous section comes from the
PAR, (1) model, then our interest is to estimate the SACF of this process. As our data
is a single realization then to be able to compare various estimators via their standard

error we used bootstrap method.
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Besides, in chapter three we have computed the bias of cach cstimator as the
theoretical PAR model along its parameters were known. Here, we will only give the
average estimators of SACF based on (3.4)-(3.6).

Therefore, we have selected 20 random samples each of length 10 (consecutive)
years. Then, the average estimates of SACF and its standard error are given in terms

of r,(v) as:

20

R0 =0 > (6)),

J=l

and

SE= \/5‘62(01 o), -0} -

J=

These formulas are used for the three estimators (3.4)-(3.6).
We have done the computations using R-package. The results are summarized in

Table (5.1) and Figure (5.3).
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Figuré (5.3): The S.E for thc three estimators of the real data for PAR 4 (1) model

=5, (V), ——: 5, (), —: 5, (V)

We can see from Table (5.1) and Figure (5.3) that the moment estimator p, (v)
has S.E value higher than the other two estimator p,(v) and S, (V). This means that

Py(v) and p,(v) seem to resist the existence of the outliers while 5, (v) does not.

This result coincides with what we have found in chapter three.

Finally, we recall that the robust estimator given in (3.5) is based on the fact that
the original model is PAR(1) model while the moment estimator (3.4) and the other
robust estimator (3.6) are model-free. That is, the results in this chapter are still valid

for p,(v) and p,(v) without assuming any specific PAR model.
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CHAPTER 6

Conclusions and Future Work

6.1 Introduction

In this chapter we are going to summarize the most important results in this thesis.

Besides, we will give some ideas for possible future research.

6.2 Conclusions

In this thesis we have investigated robust estimation for the SACF for various PAR
models. We have found many useful results concerning the PAR(1), PAR(2) and

varying-order PAR models.

For the PAR(1) model we investigated three estimators for SACF including the

moment estimator beside two other estimators.

For the computation of bias and MSE of various estimates of SACF we have
developed some theoretical formulas to compute the theoretical SACF of various PAR
models. Besides, the theoretical SACF of some PAR models are computed and
sketched. According to the simulation results, we found that the moment estimator
was affected by the existence of additive outliers in view of bias and MSE criterion
while the other estimators seem to be more robust estimators and this is true for
different periods and different number of additive outliers at different seasons. In
particular, the moment estimator was highly affected in the season(s) that contained

additive outlier(s).
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For the PAR(2) and varying-orders PAR(Z,1,0,2) models we also investigate two
estimators for SACF including the moment estimator. We cover two cases of adding
outliers, the first case is by adding a single additive outliers at season one and the

second case is by adding several random ( in view of magnitudes and positions)

outliers.

Again, it is noticed that the moment estimator was highly affected by outliers than

the other (robust) estimators.

Finally, we apply our work on real time series data of river flow. We use the real
data to compute the three estimators for SACF that we used for PAR(1) model then,
we found that the moment estimator was highly affected by the existence of additive

outliers while the other estimators seem to be more robust estimators.

6.3 Future Work

From a research point of view, time series analysis and modeling is a very
important area for both theoretical and applied disciplines. Although many
publications are available on the PAR and PARMA models, we believe that there are
several issues regarding these models that need further researches. In view of our

results we summarize some possible ideas for future work as follows:

¢ Investigating robust estimation for the SACF for other models like PMA and
PARMA models for different time lags and periods.

¢ Developing other robust estimators using trimmed mean and MAD.
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Studying the robustness of the estimators in the existence of innovative

outliers.

Studying the robustness of moment estimator regarding issues other than

outliers, as for instance the shape of distribution of the random errors.
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